Skip to contents

It estimates the agreement coefficient suggested by Ji & Gallo (2006) for a continuous predicted-observed dataset.

Usage

AC(data = NULL, obs, pred, tidy = FALSE, na.rm = TRUE)

Arguments

data

(Optional) argument to call an existing data frame containing the data.

obs

Vector with observed values (numeric).

pred

Vector with predicted values (numeric).

tidy

Logical operator (TRUE/FALSE) to decide the type of return. TRUE returns a data.frame, FALSE returns a list; Default : FALSE.

na.rm

Logic argument to remove rows with missing values (NA). Default is na.rm = TRUE.

Value

an object of class numeric within a list (if tidy = FALSE) or within a data frame (if tidy = TRUE).

Details

The Ji and Gallo's AC measures general agreement, including both accuracy and precision. It is normalized, dimensionless, positively bounded (-infinity;1), and symmetric. For the formula and more details, see online-documentation

References

Ji & Gallo (2006). An agreement coefficient for image comparison. Photogramm. Eng. Remote Sensing 7, 823–833 doi:10.14358/PERS.72.7.823

Examples

# \donttest{
set.seed(1)
X <- rnorm(n = 100, mean = 0, sd = 10)
Y <- rnorm(n = 100, mean = 0, sd = 9)
df <- data.frame(obs = X, pred = Y)
AC(df, obs = X, pred = Y)
#> $AC
#> [1] -1.337312
#> 
# }