Skip to contents

It estimates the E1 model efficiency using absolute differences.

Usage

E1(data = NULL, obs, pred, tidy = FALSE, na.rm = TRUE)

Arguments

data

(Optional) argument to call an existing data frame containing the data.

obs

Vector with observed values (numeric).

pred

Vector with predicted values (numeric).

tidy

Logical operator (TRUE/FALSE) to decide the type of return. TRUE returns a data.frame, FALSE returns a list; Default : FALSE.

na.rm

Logic argument to remove rows with missing values (NA). Default is na.rm = TRUE.

Value

an object of class numeric within a list (if tidy = FALSE) or within a data frame (if tidy = TRUE).

Details

The E1 is a type of model efficiency that modifies the Nash-Sutcliffe model efficiency by using absolute residuals instead of squared residuals. The E1 is used to overcome the NSE over-sensitivity to extreme values caused by the used of squared residuals. For the formula and more details, see online-documentation

References

Legates & McCabe (1999). Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. doi:10.1029/1998WR900018

Examples

# \donttest{
set.seed(1)
X <- rnorm(n = 100, mean = 0, sd = 10)
Y <- rnorm(n = 100, mean = 0, sd = 9)
E1(obs = X, pred = Y)
#> $E1
#> [1] -0.387503
#> 
# }