Skip to contents

It estimates the agreement coefficient suggested by Robinson (1957; 1959) for a continuous predicted-observed dataset.

Usage

RAC(data = NULL, obs, pred, tidy = FALSE, na.rm = TRUE)

Arguments

data

(Optional) argument to call an existing data frame containing the data.

obs

Vector with observed values (numeric).

pred

Vector with predicted values (numeric).

tidy

Logical operator (TRUE/FALSE) to decide the type of return. TRUE returns a data.frame, FALSE returns a list; Default : FALSE.

na.rm

Logic argument to remove rows with missing values (NA). Default is na.rm = TRUE.

Value

an object of class numeric within a list (if tidy = FALSE) or within a data frame (if tidy = TRUE).

Details

The RAC measures both accuracy and precision (general agreement). It is normalized, dimensionless, bounded (0 to 1), and symmetric (invariant to predicted-observed orientation). For the formula and more details, see online-documentation

References

Robinson (1957). The statistical measurement of agreement. Am. Sociol. Rev. 22(1), 17-25 doi:10.2307/2088760

Robinson (1959). The geometric interpretation of agreement. Am. Sociol. Rev. 24(3), 338-345 doi:10.2307/2089382

Examples

# \donttest{
set.seed(1)
X <- rnorm(n = 100, mean = 0, sd = 10)
Y <- X + rnorm(n=100, mean = 0, sd = 3)
RAC(obs = X, pred = Y)
#> $RAC
#> [1] 0.9756118
#> 
# }